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Abstract. Previously, a characteristic equation for the vibration of a viscous gravitational 
globe had been obtained by Chandrasekhar. The same equation has been found to apply 
for a viscous liquid drop under the restoring force of surface tension and is proved here to 
apply to all combinations of gravitational attraction, surface tension and Coulomb repulsion 
with surface or volume charge distribution. Complex solutions to this Chandrasekhar 
equation corresponding to the periodic motion with damping, which have not been found up 
to now but are called for in a large class of physical problems, are calculated. In addition, 
some solutions for higher aperiodic modes of decay are also evaluated. 

1. Introduction 

The vibration of a spherical liquid mass was first considered by Lord Kelvin (1863) 
who obtained the eigenfrequencies for the vibrations. The corresponding problem of a 
liquid drop was solved by Lord Rayleigh (1882). Chandrasekhar (1959) investigated 
the effect of viscosity in the case of an incompressible self-gravitating mass. A character- 
istic equation was obtained for the eigenfrequencies which were in general complex 
numbers. The corresponding problem of a viscous uncharged liquid drop was solved 
by Reid (1960) who established that except for a difference in the fundamental frequencies 
due to the different nature of forces involved, the two cases were formally identical and 
the same Chandrasekhar characteristic equation applied. 

Surface tension and gravitational forces are not the only ones that may be present in 
a spherical globe. One can envisage the presence of electric charge and consider any 
combination of the three types of forces in a globe. While surface tension or gravitational 
force can act alone as the restoring force for the liquid, in the case of a charged liquid 
drop, the Coulomb repulsion must be counterbalanced by a strong enough surface 
tension. It is of interest to generalize Chandrasekhar’s and Reid’s results to the case 
where the vibrating droplet is endowed with electric charge, distributed uniformly 
either over the volume or on the surface. Our analysis indicates that irrespective of the 
combination of forces, the same Chandrasekhar equation applies. Henceforth, we shall 
use the term ‘liquid sphere’ for the general case to denote a gravitating globe or a charged 
or uncharged liquid drop, as the case may be. 

Because of the general nature of the Chandrasekhar characteristic equation, its 
solutions may find applications to many physical problems in which vibrations of fluid 
drops are involved. For example, the vibrations of a water drop are of meteorological 
interest. Recently, extensive experimental and theoretical work has been done on 
vibrating droplets under various circumstances. The oscillations of atmospheric water 
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drops provide a mechanism for drop break-up within the clouds and are directly related 
to the formation of rain (Billings and Holland 1969, Ausman and Brook 1967, Nelson 
and Gokhale 1972). It has also been discovered (Brook and Latham 1968) that vibrating 
water drops in the atmosphere have a back-scattering effect on radar. From the fluctua- 
tions of the radar return signal thus obtained, size distribution of rain drops can be 
estimated. The vibrations of electrified drops and their break-up in electric fields have 
been found to play a central role in the formation of thunderstorms (Azad and Latham 
1970, Rosenkilde 1969, Brazier-Smith et al 1971, Brazier-Smith 1971, Jennings and 
Latham 1971). Recently, a new technique has been developed for the electromechanical 
break-up of liquid drops (Hendriks and Babli 1972), with a view to applications in fuel 
injection in controlled thermonuclear reactors. 

On the other hand, a self-gravitating sphere of viscous liquid may be of astrophysical 
interest, as it can serve as a first approximate model of a star whose non-radial oscillation 
may be induced if initially deformed by some external force. The related problem of the 
vibration of a spinning and self-gravitating viscous spheroid may also be a good idealiza- 
tion of astrophysical objects endowed with large angular momentum (Lebovitz 1961, 
Rosenkilde 1967, Chandrasekhar 1969). Another case of interest is that of an atomic 
nucleus where a model of charged liquid drop has approximate validity (Bohr and 
Wheeler 1939) It is hoped that an understanding of the classical motion of a viscous 
charged drop may provide some help for the problem of quantization later on. 

It is clear that the vibration of these objects will be affected by the presence of viscosity. 
Although the Chandrasekhar equation has been known for a long time, complex 
solutions to the equation, corresponding to periodic vibrational motion with damping, 
are still lacking. Since the characteristic equation determines the properties of the 
motion of the liquid sphere, we study this equation in detail. We evaluate the complex 
solutions which give the oscillatory modes and are of most physical interest. Previously, 
some real solutions corresponding to the lowest aperiodic modes of the liquid drop 
were given. Additional real solutions corresponding to higher modes of decay are also 
calculated in this paper. 

2. Governing equations and solutions 

The governing equation for the internal motion of the fluid is the Navier-Stokes 
equation 

where U is the velocity characterizing the motion of the fluid element, py is the mass 
density, p is the pressure, v = q / p y  is the kinematic viscosity, Vis the non-local gravita- 
tional or electrostatic potential, and pQ is the corresponding mass or charge density, as 
the case may be. 

Following Chandrasekhar, we linearize the Navier-Stokes equation by assuming 
that the amplitude of vibration c is small. The boundary of the mass is considered to 
be sharp and can be described by 

r(6,4, t )  = R + 4 t )  XA6 ,  4), (2) 

where R is the radius of the liquid sphere in equilibrium and %,,,(e, 6) is a spherical 
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harmonic. We further assume that the mass is incompressible and the density is uniform. 
Thus from the equation of continuity, we have div U = 0. This condition, together with 
the solenoidal nature of the restoring force vector leads to the important implication 
that U is purely poloidal (Chandrasekhar 1968) (which means that U can be written in the 
form U = V x [V x (Q/r)r] ,  where Q is a scalar function). From this, the mathematical 
analysis can be considerably simplified. In spherical coordinates, the various com- 
ponents of U (for the poloidal solution) are : 

where 0 gives the frequency or decay rate of the motion and V(r )  is some function to be 
determined by the boundary conditions. 

The Chandrasekhar characteristic equation has the same form for a viscous globe 
under gravitation or a liquid drop under surface tension (Chandrasekhar 1959, Reid 
1959) 

where 

and 

The J are Bessel functions of the first kind and G ~ , ~  is the fundamental frequency in the 
inviscid case. Introduced this way, the quantity a2 is a generalized dimensionless 
viscosity coefficient. 

3. Inviscid case 

In the absence of viscosity, the natural frequencies nI,o are different for the gravitating 
globe and the liquid drop under surface tension. For the gravitating globe, we have the 
Kelvin mode : 
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and for the liquid drop, we have the Rayleigh mode : 

I ( / -  1)(1+2)T 
P M R 3  

4 0  = , 

where G is the gravitational constant and Tis the coefficient of surface tension. 

frequency (Bohr and Wheeler mode) is given as 
In the case of a uniformly charged liquid drop, it can be shown that the fundamental 

where k is the coupling constant of the Coulomb interaction (it equals ($ceo)-' in the 
usual notation) and Q is the total excess charge endowed on the liquid drop. 

When the charge is distributed only over the surface of the liquid drop, two different 
cases present themselves. 

(i) When the liquid is a very good conducting material, the boundary can be taken 
as an equipotential surface during the oscillatory motion. We then have a fundamental 
frequency due to Rayleigh (1882) (see also Hendriks and Schneider 1962) 

(ii) On the other hand, when the conductivity is very low, the charge cannot 
redistribute in time to form an equipotential surface during oscillation. We then have a 
different frequency (appendix) 

4. Viscous charged liquid drop under surface tension 

It is desirable to consider the deviations in pressure and potential energy per unit mass 
in the perturbed state. Denoting the corresponding quantities by Vo and p o  at equilibrium, 
the deviations are : 

then the linearized Navier-Stokes equation can be written as 

aU 
at 
- = - V 6w - v cur12u, (7) 

where terms proportional to u2 are neglected. Taking the divergence of this equation 
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and solving the resulting Laplace equation for interior points, we have the electric 
potential 

6 v  = f ( / ) k Q ( j & ) ~ I ; , , ,  

where f ( I )  is a coefficient depending on 1 and the type of charge distribution. 
(i) For the case where the drop is uniformly charged over the volume, we have 

(ii) For the case where the charge is only on the liquid surface and where the liquid 
has a very high conductivity, we have 

f ( I )  = 0. 

(iii) For surface charge distribution on a liquid with very low conductivity, the 
function f(1) is (see appendix) 

- ( I +  1) f (0  = -. 21+1 

At the boundary points, the deviation in pressure is given as 

T 
= ( I  - 1 )  ( I  + 2 ) 7  E I;, - It(/)€ I;, , 

P M R  

where T is the coefficient of surface tension and €?(I) is a coefficient dependent on I and 
on the charge distribution : 

for uniform volume charge, 

for surface charge with high conductivity, 

12-31-2  k Q 2  
for surface charge with low conductivity. I 214-1 4?rp,R5 

From equation (6)  and the Laplace equation, 6w has the form 

6w = (I+l)rIorJcI; , ,  (9) 

where no is a constant to be determined from (6) and (7). 

and ( 3 c )  : 
The following differential equation is obtained by combining equations (7), (3a), ( 3 b )  

0 €0 U(r )+-U(r )  = --nor’+’, 
d2 V ( r )  / ( I +  1 )  

dr2 r2 V V 

where we have written c0 e-ar in place of C. The general solution to this equation is 

where q = (o/v)’/~ and A is a constant. 
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There are three boundary conditions to be considered. First, from the requirement 
of consistency between the radial component of the velocity and the form of the boundary, 
we have 

Secondly, the tangential viscous stress tensor vanishes on the boundary. This leads 
to 

u = o  for r = R. 
d2U 2 dU l(l+ 1)  -+- dr2 r dr r2 

Equation (13) together with equation (1  l), gives 

2(1- ~ ) C , U R ~ ’ ~  
A =  

1(2ZJl+&) - Z2Jl +*m‘ 
One notes in passing that for small values of the viscosity, we have A - v and the 
solution of equation ( 1  1 )  for A = 0 leads to 

v x u  = 0. 

In other words, one has an irrotational flow for the inviscid case. The flow becomes 
rotational as A becomes non-zero. The effect of viscosity on flow pattern is therefore to 
change it from an irrotational flow into a rotational flow. 

Finally, the last boundary condition stipulates that the r-r component of the total 
stress tensor is given by T(l/R, + 1/R2), where R ,  and R ,  are the principal radii of 
curvature. The latter quantity can be shown to be (cf Lamb 1931, Landau and Lifschitz 
1958) 

T -+- = T - + ( l - 1 ) ( 1 + 2 ) 7 -  * (d, b2) i: 9 R 

On the other hand, the r-r component of the stress tensor is 

Thus, from equations (6), ( l l ) ,  (14), and (15), we arrive at the following equation: 

This equation is in the same form as equation (37) in the paper of Chandrasekhar (1959) 
for the case of a self-gravitating liquid sphere. Hence, it is clear that equation (16) will 
eventually lead to the same Chandrasekhar characteristic equation (4). 

For completeness, one can consider the rather academic case of a gravitating sphere 
with surface tension. It can be proved that one obtains the same Chandrasekhar 
equation, with only the modification that the natural frequencies are : 

T l(1- 1)  
P M R 3  21+ 1 

= l(1- 1)(1+2)-+$~Gp,-. 

Thus, the Chandrasekhar equation is found to be applicable to all combinations of 
gravitational interaction, surface tension and Coulomb repulsion. Solutions to this 
equation can therefore be of interest for a very large class of physical problems. 
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5. Analysis and numerical results for aperiodic motion 

We discuss below some properties of the Chandrasekhar characteristic equation (4) 
for the aperiodic modes, which have been given by Chandrasekhar (1959). 

For real arguments of the characteristic equation, the function Y(z) has an infinite 
number of poles, each of which is located in an interval, the end points of which are zeros 
of J ,+,  and J l + + .  If z l ,  z2, .  , . are the poles, then for the Kth pole, we have 

limY(zK-6) = - 0 0  and limY(z,+6) = +CO.  (18) 
6+0 6-0 

It follows that Y has an infinite number of zeros, that is, there is an infinite number of 
intervals in which Y is positive and then negative, alternately. Also the characteristic 
equation Y(z) = a4 has an infinite number of real solutions, corresponding physically 
to an infinite number of permissible aperiodic modes for the liquid sphere. In the 
asymptotic case of v + CO, we have (Chandrasekhar 1959) 

21+ 1 R 2  
+ ‘“2(1- 1)(212 +41+ 3) U‘ 

Another asymptotic case that deserves attention is the case when z + CO. There, the 
solutions z -, zK for K + 00. Physically, this means that the higher modes of decay 
can be, to a good approximation, given by o N z;v/R’ ( K  2 2). 

The numerical calculations were carried out by means of a computer. We used 
Newton’s method to obtain the roots of the Chandrasekhar characteristic equation. 
For every order of deformation ( I  = 2,3,4), this method was successful for the two 
lowest aperiodic modes, whereas it fails for higher aperiodic modes because of the 
proximity to the poles. Accordingly, values of the characteristic equation were calculated 
in such neighbourhoods, before a method of false position (regula falsi) was used. 

Previously, numerical results for the lowest two aperiodic modes were already ob- 
tained by Chandrasekhar. There, they were given in terms of c ~ / o ~ , ~  while the generalized 
viscosity is given as oz,oR’/v. In the case of a charged liquid drop, the ratio of ol,o to 
02,0 involves fissility parameters. It may be more convenient to express the solutions in 
terms of c ~ / o ~ , ~  and write the generalized viscosity in terms of a, , ,R2/v  = a’. The curves 
of the numerical solutions are given in figure 1, in which o / ~ , , ~  is plotted against a’. For 
a small value of a’ and a specific order of oscillation, there exist two lowest aperiodic 
modes. When a critical value aiax( l )  is reached, complex solutions are obtained for 
a’ > a iax ,  The values of a iax  for various 1 are tabulated in table 1. When expressed 
in the same units, our results agree with those of Chandrasekhar. 

6. Periodic motion with damping 

For every 1 2 2, when a’ > a iax ,  the characteristic equation will give complex solutions 
as well as real solutions. The latter are the solutions of the higher aperiodic modes 
beyond the first two and are infinite in number. The former complex solutions were 
obtained by means of the computer and the Newton-Raphson method was used. 

We attempted to search numerically for more than one pair of conjugated complex 
solutions for each value of a2 2 aiBxr over a relatively large region defined by 
0 < Re(o/ol,o) < 4.0 and 0 < Im(o/al,o) < 2.0. However, it was found that for the 
various orders investigated, there was only one pair of complex conjugate solutions. 
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Figure 1. The real solutions of the Chandrasekhar characteristic equation for the two lowest 
aperiodic modes of decay (full curves) and one higher aperiodic mode (broken curves) as a 
function of a2. They are labelled by the order of the deformations I = 2,3, and 4. The loca- 
tions of akax for various l are indicated by arrows in the figure. 

Table 1. The values of aT,,(O and the corresponding u/ui,o for the lowest aperiodic mode. 
The critical values c&, (1) determine the radii RCJ1)  below which periodic motion is 
impossible. As an example the radii RC,JI) for a water drop for various values of I are given. 

1 akax(l) (lowest mode) RCri, 
ai,o for water (mm) 

2 3,6902 0.96799 0.236 x 
3 8,8340 0,9260 0,360 x 
4 * 15.45 - 0.90 0,459 x 

We plot the real parts of the eigenfrequencies Re(o/ol,,) and their imaginary parts 
Im(a/ol,,) as functions of u2 in figure 2. As the complex solutions appear in conjugate, 
we plot only the solutions in the upper complex plane. One observes that as U' increases, 
Im(a/al,J rises rapidly from 0 towards 1.0. One can see the effect of viscosity on the 
vibrational frequency, namely, that when periodic solution is still possible, the higher 
the kinematic viscosity, the smaller is u2 and the lower is the eigenfrequency of vibration. 
On the other hand, Re(a/al,J decreases and approaches 0 with increasing values of u2. 
Hence, the decaying factor decreases with viscosity as expected. The behaviour of the 
solution for small viscosity can be understood by considering equation (5 ) .  There, as 
v -+ 0, or equivalently a' -+ CO, the eigenfrequencies approach asymptotically the values 
(Chandrasekhar 1959) 

One more point can be noted. As U* varies in the neighbourhood ofuHax, the solutions 
of Chandrasekhar characteristic equations for the aperiodic and the periodic motions 
vary in a continuous way. This continuity can be seen in figure 2, in which the solutions 
for the aperiodic modes of decay are also plotted. One observes that the real part of the 



1046 H H K Tang and C Y Wong 

Figure 2. The complex solutions U / U , , ~  of the characteristic equation are plotted against 
a*. For each 1, the real part of a/u,,,, is shown as a full curve and the imaginary part is shown 
as a broken curve. The real solution for a2 < aLl (full curve) is also included to show the 
continuity of the real parts as a' varies across aLi. 

eigenfrequencies for the periodic motion joins onto the solutions for the aperiodic 
motion at a&x. This property was made use of in locating the accurate values of 
in the numerical calculations. 

7. Examples 

So far, the viscosity of the fluid has been given a generalized definition so that the same 
Chandrasekhar characteristic equation applies. It is desirable to see explicitly in a 
concrete example how the generalized viscosity coefficient a' and the viscosity coefficient 
q are related. We shall give such dependence in the example of a rain drop. The oscilla- 
tions of a rain drop are usually caused by the flow of air around them. From the size 
of the rain drops and their frequencies of oscillation as they fall down, much information 
may be obtained about the atmospheric conditions (Azad and Latham 1970, Nelson and 
Gokhale 1972). The relevant coefficients at 20°C are (Weast 1971-1972): 

pM = 0.998203 gcm-3 

q2o"c = 1.002 cp 

T200c = 72.75 dyn cm- 

Assuming a harmonic deformation of order I ,  the eigenfrequencies in the inviscid case 
are given from equation (4b) : 

.to = / ( I -  l)(I+2)$- 
P M R 3 '  

So, the generalized viscosity coefficient a2 can be expressed as 

a 2 - 1 , 0 -  CT R2 (I(I-1)(l;z2)pMTR 
V 

In figure 3, we plot a' and o ~ , ~  as functions of radius R. As can be seen from the 
figure, a2 increases with increasing R while C T ! , ~  are very large for small values of R, but 
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Figure 3. The natural eigenfunctions C T , , ~  of a water drop at 20°C (full curve) and the corres- 
ponding generalized viscosity coefficient a* (broken curves) are plotted as functions of 
radius R.  

decrease very rapidly towards zero with increasing R. For R of the order of 0.1 mm, 
a’ is of the order of IO3. Thus, for water drops of this size, the effect of viscosity is very 
small. 

we have an initial radius Rcrit below which 
there can be only aperiodic modes of motion : 

Corresponding to the initial value 

For the water drop, the corresponding values of a iax  and Rcril for various 1 are given in 
table 1. An examination of these initial values reveals the fact that Rcrit at I = 2,3, and 4 
are rather small from a macroscopic point of view. Atmospheric water drops and those 
used in the experiments are usually of much larger size. This implies that oscillatory 
modes with small damping are always present in the motion of moderately large (of the 
order of 1 mm) water drops which are slightly perturbed. Our result of Rcrit for the 
principal mode 1 = 2 agrees with that of Chandrasekhar (1969) where a factor of lo4 
missing previously was corrected. 

It is interesting to note the sudden change of character of the motion in the neigbour- 
hood of Rcril. It is expected that any phenomenon which may be affected by the vibration 
of the liquid drop, such as the propagation and reflection of sound, heat, and electro- 
magnetic waves in a medium of suspended liquid drops, will exhibit a singular behaviour 
for drops with radius close to Rcril. 

For an oscillating liquid sphere, aperiodic motion occurs only when the natural 
frequency is greater than a certain limit. This is different from the general behaviour 
of a damped harmonic oscillator with a damping term yk for a fixed value of y. There, 
overdamping occurs when the natural frequency U,, is lower than a certain limit. The 
behaviour of an aperiodic motion at high frequency can however be reproduced with a 
damping term of the form yw&t or y x  in a simple harmonic oscillator. 

With the determination of the value ofakax, one can set an upper limit on the order of 
magnitude of the coefficient of viscosity for an atomic nucleus. From the fact that 
vibrational-type spectra have been observed for atomic nuclei (Bohr and Mottelson 
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1953), one concludes that the nuclear viscosity coefficient for nuclear matter satisfies the 
following inequalities : 

R2 
'J290 > 3.69, 

V 
and 

0330R2 > 8.82. 
V 

For an order ofmagnitude estimate of the upper limit, one can take ' J ~ , ~  to be the observed 
energy of the first A-multiple states in some vibrational nuclei. In the Cd-Pd region, the 
first 2' state lies at an energy about 0.5 MeV and the first 3- state about 2 MeV. The 
inequalities lead to 

v < 0.019 fm c = 5.7 x cm2 s -  

from the quadrupole state and 

v <O.O3Ofmc = 9 . 0 ~ 1 0 - ~ c m ~ s - '  

from the octupole state. One concludes that the viscosity coefficient v for an atomic 
nucleus should be less than the order of 0.02 fm c. 

8. Conclusions 

Because of the general nature of the Chandrasekhar characteristic equation in being 
applicable to an incompressible liquid sphere irrespective of the nature of counter- 
balancing forces, the equation has a wide range of applications for models of astronomical 
objects, water drops and atomic nuclei. For this reason, the solutions to the 
Chandrasekhar equation are examined in some detail. Complex solutions to this 
equation, corresponding to periodic motion of the liquid sphere with damping, are 
evaluated. In addition, some solutions for higher aperiodic modes are also evaluated. 

Of particular interest in future work is the quantization of a charged liquid drop with 
viscosity, for which the inviscid case has already been treated by Bohr and Mottelson 
(1953) in the collective model of an atomic nucleus. Understanding of the classical 
dynamics may be of some help in formulating the problem. 
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Appendix. Vibrational frequency of an inviscid liquid drop with a surface charge and 
low conductivity 

In the extreme case of a liquid with a very low conductivity, the charges endowed on the 
liquid surface will follow the flow pattern of the liquid instead of redistributing themselves 
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to maintain an equipotential surface. Then, to the first order in E ,  the surface charge 
density within an element of solid angle remains constant during the motion ; ie, 

PQ('  +R) R 2  sin 0 d8 d 4  = p o R 2  sin 8 de d4 ,  

where p Q  is the surface charge density at any instant and p o  is the uniform charge density 
in the equilibrium configuration. Hence we have 

From the charge distribution, the electric potential at any point in space can be 
evaluated to be : 

for exterior points, 

( A 4  
1 l + l  r f  
R 21+1 RI" 

kQ for interior points. 
w, e, 4, t )  = 

Then the radial component of the electric field is given as : 

1 1(1+1) RI-' 
k Q ( ; i + p  21+1 - C L )  r 1 + 2  

kQ- 21+1 - R l + 2 ~ x m  

for exterior points, 

('4.3) 
l ( l + l )  r l - l  

for interior points. I JW> 6, 4, 4 = 

The pressure at surface points due to Coulomb repulsion is the mean of the value 
p Q E , ,  at interior and exterior points, as they approach the surface. In magnitude, it is 
given as : 

kQ2 +12-33[-2 kQ 
P& 4, t )  = - 8nR4 21+1 4nR5""' 

The averaging of the interior and exterior electric fields is justified as the above result 
can also be obtained in a careful analysis in which a small but finite thickness of the 
surface charge distribution is taken into account. 

After collecting the contributions to the total deviation in pressure, due to surface 
tension and Coulomb repulsion, the deviation in pressure at the surface is 

T 12-31-2 kQ2 
p M R 2  21+1 m) E X m .  

As the presence of electric charges on the surface serves only to impose a constraint on 
the boundary, so for the case of surface charge, we have from equations (6) and (9) : 

Thus from equations (AS), (A.6) and (16), it can be easily seen that with a very low 
conductivity, the eigenfrequencies for the inviscid case are given as : 

l(l-1)(1+2) 1(12-31-2) kQ2 
T-  

P M R 3  21+1 47Lp,R6' =1,0 = 
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One notices that for the Coulomb repulsion part, ( I 2  - 31- 2) > 0 only when I 2 4. 
This result implies that the presence of the electric charge tends to restore the equilibrium 
for oscillations with 1 -= 4 and becomes disruptive only for 12 4. Thus, when an 
excessively charged liquid drop of this type undergoes fission due to Coulomb repulsion, 
the break-up will result in four or more fragments. The critical charge for an I = 4 
oscillation is : 

This is 4.5 times larger than the critical charge for the case where the electric charges can 
redistribute themselves to maintain an equipotential surface. I t  is of interest to see if 
this result can be verified experimentally. 
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